p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.72D4, M4(2)⋊18D4, C22⋊2C4≀C2, C4⋊D4⋊9C4, C4.58(C4×D4), C22⋊Q8⋊9C4, C42⋊6C4⋊20C2, C4.123C22≀C2, C23.557(C2×D4), (C22×C4).285D4, C22.41(C4⋊D4), (C22×M4(2))⋊10C2, C22.19C24.5C2, (C2×C42).275C22, (C23×C4).253C22, C23.118(C22⋊C4), C42⋊C2.15C22, (C22×C4).1358C23, C2.41(C42⋊C22), C2.10(C23.23D4), C4.136(C22.D4), (C2×M4(2)).317C22, (C2×C4≀C2)⋊12C2, C2.41(C2×C4≀C2), C4⋊C4.68(C2×C4), (C4×C22⋊C4)⋊23C2, (C2×D4).70(C2×C4), (C2×Q8).61(C2×C4), (C2×C4).1530(C2×D4), (C2×C4).754(C4○D4), (C2×C4).376(C22×C4), (C22×C4).275(C2×C4), (C2×C4○D4).15C22, (C2×C4).190(C22⋊C4), C22.262(C2×C22⋊C4), SmallGroup(128,603)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.72D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=f2=1, e4=d, faf=ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, bf=fb, ece-1=fcf=cd=dc, de=ed, df=fd, fef=cde3 >
Subgroups: 380 in 188 conjugacy classes, 58 normal (36 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C2.C42, C4≀C2, C2×C42, C2×C22⋊C4, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C22×C8, C2×M4(2), C2×M4(2), C23×C4, C2×C4○D4, C42⋊6C4, C4×C22⋊C4, C2×C4≀C2, C22.19C24, C22×M4(2), C24.72D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4○D4, C4≀C2, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22.D4, C23.23D4, C2×C4≀C2, C42⋊C22, C24.72D4
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 29)(10 30)(11 31)(12 32)(13 25)(14 26)(15 27)(16 28)
(1 29)(2 30)(3 31)(4 32)(5 25)(6 26)(7 27)(8 28)(9 23)(10 24)(11 17)(12 18)(13 19)(14 20)(15 21)(16 22)
(1 29)(2 26)(3 31)(4 28)(5 25)(6 30)(7 27)(8 32)(9 23)(10 20)(11 17)(12 22)(13 19)(14 24)(15 21)(16 18)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 12)(2 21)(3 14)(4 23)(5 16)(6 17)(7 10)(8 19)(9 32)(11 26)(13 28)(15 30)(18 29)(20 31)(22 25)(24 27)
G:=sub<Sym(32)| (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,29)(2,26)(3,31)(4,28)(5,25)(6,30)(7,27)(8,32)(9,23)(10,20)(11,17)(12,22)(13,19)(14,24)(15,21)(16,18), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,12)(2,21)(3,14)(4,23)(5,16)(6,17)(7,10)(8,19)(9,32)(11,26)(13,28)(15,30)(18,29)(20,31)(22,25)(24,27)>;
G:=Group( (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,29)(2,26)(3,31)(4,28)(5,25)(6,30)(7,27)(8,32)(9,23)(10,20)(11,17)(12,22)(13,19)(14,24)(15,21)(16,18), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,12)(2,21)(3,14)(4,23)(5,16)(6,17)(7,10)(8,19)(9,32)(11,26)(13,28)(15,30)(18,29)(20,31)(22,25)(24,27) );
G=PermutationGroup([[(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,29),(10,30),(11,31),(12,32),(13,25),(14,26),(15,27),(16,28)], [(1,29),(2,30),(3,31),(4,32),(5,25),(6,26),(7,27),(8,28),(9,23),(10,24),(11,17),(12,18),(13,19),(14,20),(15,21),(16,22)], [(1,29),(2,26),(3,31),(4,28),(5,25),(6,30),(7,27),(8,32),(9,23),(10,20),(11,17),(12,22),(13,19),(14,24),(15,21),(16,18)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,12),(2,21),(3,14),(4,23),(5,16),(6,17),(7,10),(8,19),(9,32),(11,26),(13,28),(15,30),(18,29),(20,31),(22,25),(24,27)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | ··· | 4Q | 4R | 4S | 4T | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | D4 | D4 | D4 | C4○D4 | C4≀C2 | C42⋊C22 |
kernel | C24.72D4 | C42⋊6C4 | C4×C22⋊C4 | C2×C4≀C2 | C22.19C24 | C22×M4(2) | C4⋊D4 | C22⋊Q8 | M4(2) | C22×C4 | C24 | C2×C4 | C22 | C2 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 4 | 4 | 4 | 3 | 1 | 4 | 8 | 2 |
Matrix representation of C24.72D4 ►in GL4(𝔽17) generated by
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
13 | 0 | 0 | 0 |
0 | 13 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 4 | 0 |
0 | 4 | 0 | 0 |
13 | 0 | 0 | 0 |
0 | 0 | 0 | 16 |
0 | 0 | 16 | 0 |
G:=sub<GL(4,GF(17))| [0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[13,0,0,0,0,13,0,0,0,0,0,4,0,0,1,0],[0,13,0,0,4,0,0,0,0,0,0,16,0,0,16,0] >;
C24.72D4 in GAP, Magma, Sage, TeX
C_2^4._{72}D_4
% in TeX
G:=Group("C2^4.72D4");
// GroupNames label
G:=SmallGroup(128,603);
// by ID
G=gap.SmallGroup(128,603);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,288,422,1018,248,2028]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=f^2=1,e^4=d,f*a*f=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=f*c*f=c*d=d*c,d*e=e*d,d*f=f*d,f*e*f=c*d*e^3>;
// generators/relations